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An analysis on what is known as the interpretation of Fourier maps has been

done from the information theory point of view: determining the nature of the

peaks in the map (in order to assign them a suitable scattering factor) and

allocating bonds between some of the possible peak pairs. Before interpreting

the map, a quantitatively measurable entropy (uncertainty, unknowingness)

relating to the molecular structure is known. After the interpretation, this

entropy becomes amount of information. This analysis allows us, for the first

time in crystallography, to quantify these parameters and analyse the

contributions of the different information sources.

1. Introduction

The information theory (Ash, 1967; Pierce, 1980; Gray, 1990;

Kahre, 2002; Mackay, 2003; Goldman, 2005) takes care of the

problems arising from the conservation, transformation and

transmission of information. To deal with these problems

mathematically, it is necessary to define, first of all, a measure

for information.

The information theory is, in fact, a theory of the measure of

information, based on the assumption that information is

measurable. The information theory has broad applications in

cybernetics, telecommunications engineering, information

technology, thermodynamics, astronomy, amongst other

subject areas.

Attempts to use widely the ideas of information theory in

different branches of science are linked to the fact that it is

primarily a mathematical theory. Its main concepts (entropy

and amount of information) are only determined through

probability events, to which the most wide-ranging physical

meaning can be attributed.

Among the previous applications of information theory to

crystallography, we should mention the work by Diamond

(1963), who introduced a measure (in bits) of the information

contained in the inequality of Karle–Hauptman determinants.

Hosoya & Tokonami (1967) considered the estimation of the

conformational entropy of an essentially one-dimensional real

structure and the removal of structural uncertainty during

crystal structure determination by the information contained

in the reflection intensities and in the Patterson peaks.

de Rango et al. (1974) stressed the relation between the effi-

ciency of the probability laws for phase determination and

information theory. Gassmann (1977) discussed the problem

of coding structural information in crystallography. Piro

(1983) derived the information content of some invariants and

quantified the gain in information due to a priori structural

knowledge of the signs of some triplet products.

We shall use the information theory in the crystallography

field in order to measure the amount of information that a

Fourier map contains.

2. The amount of information

2.1. Concept

In informal language, information is a synonym of surprise

or knowledge, and is measured by the degree of surprise that it

produces on whoever receives it or by the value attributed to it

by whoever has it. Such a concept is also used in information

theory, although the basic idea behind the classic information

theory must rather be acknowledged as the amount of infor-

mation concept.

It is not so obvious that dealing with the amount of infor-

mation contained in a given message or wanting to measure it

with a simple number makes sense. If we want to introduce

such a measure, we have to extract the information’s shape as

well as its content. We should act just like a telegraph office

employee who, in order to calculate the sum that must be paid,

only takes into account the number of words within the tele-

graph.

It is appropriate to measure the amount of information

contained in a given message by the number of signs that must

be used to express its content in the briefest possible way. Any

kind of sign system can be used, but the information that has

to be measured must then be translated into this system. For

technologically imperative reasons, the binary system has been

imposed.

In turn, the amount of information within a given message is

measured by the number of signs that are needed to express it



by zeros and ones. In this sense, messages that are different in

shape and content with respect to the information they

contain can thus be compared.

When a number can adopt a value zero or one, the infor-

mation that indicates that it takes one of these values will be

taken as the information unit. The information unit is called a

bit, an abbreviation of binary digit. We will interpret the

meaning of one bit as the simplest way to give information:

choosing one from two possible alternatives.

2.2. Hartley formulation

If we have a set E of N elements, the formula

IðENÞ ¼ log2 N; ð1Þ

where IðENÞ stands for the information that is needed to

define the elements of a set E of N elements, is known as the

Hartley formula (Hartley, 1928).

The measure of information proposed by Hartley had a

tremendous historic importance, as it represented the first

equation readily available to measure the amount of infor-

mation. However, it is necessary to warn that this formula is

only valid for a model of information source that attributes

equal probabilities to all of its states.

2.3. Shannon formulation

The degree of indetermination when testing a given source

outcome depends not only on the number of states but also on

the test probabilities. The Shannon formula (Shannon,

1948a,b, 1949) is more general and allows source events with

equally likely states as well as sources with non-equally likely

states to be treated, as it incorporates the probabilities directly

into the formula. For this reason, this formula is used a lot

more in the information theory field than the Hartley formula.

Consider E1, E2, . . . , En two by two independent sets, this is

Ei \ Ej ¼ ;; i 6¼ j; ð2Þ

in which

E ¼ E1 [ E2 [ . . . [ Ek [ . . . [ En; ð3Þ

where Nk is the number of elements of Ek. The number of

elements of E is given by N ¼
Pn

k¼1 Nk, pk ¼ Nk=N

(k ¼ 1; 2; . . . ; n) being the probability that an element chosen

at random belongs to set k. In turn, the Shannon formula

establishes that

I ¼ �
Pn
k¼1

pk log2 pk: ð4Þ

Shannon showed that the function I (i) is positive, (ii)

increases with increasing uncertainty and (iii) is additive for

independent sources of uncertainty.

If, in particular, n ¼ N and p1 ¼ p2 ¼ . . . ¼ pN ¼ 1=N

(equal likely outcomes), the Shannon formula

I ¼ �
XN

k¼1

pk log2 pk ¼ �
XN

k¼1

1

N
log2

1

N
¼ log2 N ð5Þ

reduces to the Hartley formula.

In this article, we will use either the Hartley formula or the

Shannon formula, depending on which one is more suitable to

the particular case under study.

3. Amount of information and entropy

3.1. The concept of informational entropy

If we carry out an experiment, the possible outcomes of

which are described by the given scheme A, then in doing so

we obtain some information (i.e. we find out which of the

events Ak actually occurs) and the uncertainty of the scheme is

completely eliminated. Thus, we can say that the information

given to us by carrying out some experiment consists in

removing the uncertainty that existed before the experiment.

The larger this uncertainty, the larger we consider to be the

amount of information obtained by removing it. Shannon

referred to the uncertainty of a process as its entropy, S(A).

It is natural to express the entropy removed, S(A), by

increasing the function of the quantity of information, I(A).

The choice of this function means the choice of some unit for

the entropy and is therefore fundamentally a matter of

indifference. However, it is very convenient to take this

entropy proportional to the quantity of information. Of

course, the constant of proportionality can be taken as unity,

since this choice corresponds merely to a choice of units. Thus,

in all that follows, we can consider the amount of information

given by the realization of a finite scheme to be equal to the

entropy of the scheme. This stipulation makes the concept of

entropy especially significant for information theory. There-

fore, the amount of information given by the interpretation of

the Fourier map will equal the amount of uncertainty that

existed before the interpretation.

Because entropy and the total amount of information

definitions inform us on the same reality, it is common to hear

the term informational entropy when referring to the degree of

uncertainty of a certain experiment.

3.2. Relationship between entropy and a probability distri-
bution

In this section, we look thoroughly at the relationship

between entropy and a probability distribution.

In the probability theory, a complete system of events

fA1;A2; . . . ;Ang is a set of events in such a way that one and

only one of the probability events can occur in a given test or

experiment. With this system of events, we associate the set of

probabilities fp1; p2; . . . ; pi; . . . ; png, generating in this way a

finite diagram of probabilities. Every finite scheme describes a

state of uncertainty. We have an experiment, the outcome of

which can be one of the events {A1, A2, A3, . . . , An} and we

know only the probabilities of these possible outcomes. It

seems obvious that the amount of uncertainty is different in

different schemes. Thus, in the two simple alternatives

A1 A2

0:5 0:5

� �
;

A1 A2

0:99 0:01

� �
; ð6Þ
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the first obviously represents more uncertainty than the

second; in the second case, the result of the experiment is

‘almost surely’ A1, while in the first case we naturally refrain

from making any prediction. The scheme

A1 A2

0:3 0:7

� �
ð7Þ

represents an amount of uncertainty intermediate between the

preceding two.

Shannon’s definition of the total amount of information I or

informational entropy S associated with a probability distri-

bution P ¼ fp1; p2; . . . ; pi; . . . ; png,

IðPÞ ¼ SðPÞ ¼ �
Pn
k¼1

pk log2 pk; ð8Þ

is in agreement with the previous probability interpretation, as

it assigns more entropy to the greatest uncertainty alternative.

Thus, for example, if we apply equation (8) to the three

previous probability diagrams, we obtain as informational

entropy values 1, 0.081 and 0.88, respectively, which confirms

that an increase in uncertainty results in an increase of

informational entropy.

According to the previous interpretation, the maximum-

entropy value (maximum uncertainty, maximum unknowing-

ness) will be attained when the possible results of the random

experiment are equally likely and will be represented by

Smax ¼ log2 N: ð9Þ

Entropy’s minimum value will be null,

Smin ¼ 0; ð10Þ

this means that there is no indetermination upon the result of

a given experiment.

The applicability of the information theory to different

systems or structures is only conditioned by the possibility of

building a finite diagram of probabilities. If this is possible,

equation (8) will then take us directly to the amount of

information or informational entropy.

4. Informational entropy of Fourier maps

4.1. Approaching the problem

Since 1948, the year in which Shannon analysed the statis-

tical consequences of entropy and applied it to the commu-

nications field, numerous physicists have attempted to find

applications for informational entropy. For example, Jaynes

(1957) used the ideas of information theory to build the

fantastic world of statistical mechanics. In this section, we use

the information theory in order to calculate the information

contained in a Fourier map.

A Fourier map may be regarded as a particular set of peaks

pertaining to a set of many possible crystal structures.

Therefore, an entropy (uncertainty, ignorance) might be

defined for such a map. In order to solve the structure, this

uncertainty must be removed. This information should match

the entropy.

Let us consider a Fourier map of N peaks, A1;A2; . . . ;AN ,

and n scattering-factor types [corresponding to a (sub)mol-

ecule of N atoms and n different atomic species]. By setting

this hypothesis, we are assuming that there are no spurious

peaks, so it does not involve any restriction. If we want to

include the spurious peaks, we could incorporate them into the

diagram that we develop but consider them as an additional

type of atom that does not chemically bond to any of the other

atoms. Interpreting a Fourier map means, on the one hand,

identifying each peak in the map with a certain atomic species

(which is essentially equal to assigning to each peak a certain

scattering factor) and, on the other hand, establishing or not a

chemical bond between each of the possible pairs of peaks. We

have, in turn, two different types of uncertainty in the Fourier

map, which will give rise to two entropy types. We will call the

first one informational entropy due to scattering factor, SðSÞ,

and the second one informational entropy due to connectivity,

SðCÞ.

4.2. Informational entropy due to connectivity

Let us consider now the informational entropy due to

connectivity. This entropy is caused by the uncertainty present

due to the existence or not of chemical bonds between each of

the possible pairs of atoms.

Suppose that for any two atoms (peaks in the Fourier map)

we have to decide which of the following statements is correct:

(a) In the molecule M, there is a chemical bond between the

atoms Ai and Aj.

(b) In the molecule M, the atoms Ai and Aj are not

chemically bonded.

Every unordered pair of atoms, (Ai, Aj), is a discrete

information source. The number of theoretically possible

bonds in a (sub)molecule is N(N�1)/2, since aii = 0 and aij = aji,

aij being the ijth element of the connectivity matrix. The

probability that a randomly chosen pair of atoms are chemi-

cally bonded is

pb ¼
1
2 ð11Þ

and the informational entropy in connectivity for such a

(sub)molecule, S(C) is
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Figure 1
Molecular structure of compound X.



SðCÞ ¼ �
XNE

i¼1

ðpb log2 pb þ �ppb log2 �ppbÞ ¼
NðN � 1Þ

2
; ð12Þ

where

�ppb ¼ 1� pb ¼
1
2 ð13Þ

and being NE ¼ NðN � 1Þ=2, the number of edges (possible

bonds) of the complete graph with N vertices, KN.

It is interesting to note how this derived entropy shows a

maximum-entropy value in the Shannon formula. As

previously argued, this is because the maximum-entropy value

is obtained when the possible states of an information source

are equally likely, just as we have assumed in our formulation

by assigning the same probability to the existence or non-

existence of a chemical bond.

As we are considering equal probabilities for the existence

or non-existence of a chemical bond, we can calculate infor-

mational entropy according to the Hartley formula. If we

consider a pair of atoms as an information source, there are

only two possibilities related to the connectivity (bond or no

bond). In turn,

Sb ¼ log2 2 ¼ 1; ð14Þ

where Sb is the entropy due to a pair of atoms or potential

bond. Owing to the additions of independent information

sources, the entropy due to connectivity of a Fourier map will

be given by

SðCÞ ¼
XNE

i¼1

1 ¼ NE ¼
NðN � 1Þ

2
; ð15Þ

obtaining the same result as previously through the Shannon

formula.

We can also calculate entropy according to the Hartley

formula but following a different approach to the one we have

just developed. Now, we shall not consider a pair of atoms or

peaks in the map as an information source but all of the peaks

from the map. Given a set of peaks in the map (corresponding

to atomic nuclei), we can establish different connectivity

relationships amongst them. Each network of bonds will give

rise to a certain molecular structure. Hartley’s different

possibilities will now be the possible molecular structures that

can be generated from a set of N peaks. The number of

possible molecular structures for a set of N peaks can be

calculated1 (Menéndez-Velázquez, 1999; Menéndez-Veláz-

quez & Garcı́a-Granda, 2006). In the case of non-labelled

peaks, this number will be given by 2NE ¼ 2NðN�1Þ=2. In turn, if

there are 2NðN�1Þ=2 possibilities of equal probability, the

informational entropy of the map associated with the

connectivity will be given by

SðCÞ ¼ log2 2NðN�1Þ=2
¼ NðN � 1Þ=2: ð16Þ

We can therefore see how, by using the different methods, we

can reach the same informational entropy value. In all of these

cases, the informational entropy due to connectivity corre-

sponds to a Fourier map with labelled peaks.

If we considered the case of non-labelled peaks, the infor-

mational entropy of a Fourier map would decrease, as there

would be pairs of atoms or bonds potentially equivalent by

symmetry and, as a consequence, the number of existing

unknowns or uncertainty in the map relating to a bond would

be reduced. If we have, for example, two pairs of atoms

equivalent by topological symmetry, it would be enough to

store the information of one of the pairs, avoiding in this way

doubling up the information. In order to consider the case of

non-labelled peaks, the most practical thing to do is to use the

Hartley formula, as then we will only need to know the

number of potential molecular structures non-equivalent by

symmetry in a Fourier map of N peaks2 (Menéndez-Veláz-

quez, 1999; Menéndez-Velázquez & Garcı́a-Granda, 2006). In

Tables 1 and 2, we show the informational entropy due to

connectivity, SðCÞ, of a Fourier map with different numbers of

peak values, and considering the case of labelled peaks as well

as that of non-labelled peaks. Here we can clearly see that,

when considering non-labelled peaks, entropy (uncertainty)

decreases, as then pairs of atoms that are topologically

equivalent start to appear, thus reducing the number of

different pairs of atoms upon which there is an uncertainty

relating to the existence or non-existence of a chemical

bond.

4.3. Informational entropy due to the scattering factor

Once having considered the informational entropy due to

connectivity, let us now have a look at the informational

entropy due to the scattering factor. Let us consider first the

case of labelled peaks.

Let us suppose, as an example, that the molecular structure

to elucidate is that of compound X shown in Fig. 1.

Before solving the structural make-up, the previous analysis

methods tell us that the empirical formula of the compound to

be elucidated is C16H20O3. Let us now suppose that, in the

process of finding the structural composition, we generate a

Fourier map with peaks corresponding to all the atoms, except

H atoms, in the molecular structure to be elucidated. Let us

also suppose that there are no spurious peaks present. With

these preliminary hypotheses, the Fourier map will consist of

19 peaks.

The sources of information associated with the scattering

factor are not independent information sources, as we will

prove here. In the example that we are considering of

compound X, there are 19 atoms, 3 of which are O and the rest

research papers
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1 The combinatorial algebraic, through the Polya theorem and its generating
functions, provides adequate tools to carry out an account of molecular graphs
with N nodes and a different number B of bonds, B taking the values
B ¼ 0; 1; 2; . . . ;NðN � 1Þ=2. Adding the number of (N, B) graphs – graphs
with N nodes and B bonds – for the different values of B, we obtain the total
number of possible molecular graphs that can be generated from N nodes
through the assignation of bonds. This last number corresponds to the cardinal
of E set, jEj, in the Hartley formulation.

2 If peaks are not labelled, it is necessary to take into account the topological
symmetry of the graphs to avoid repeatedly counting the graphs that are
equivalent for their symmetry. This is possible through the introduction of
automorphism groups and the so-called cycle index that reintroduce in a way
the symmetry in the Polya theorem.



are C atoms. Initially, an atom chosen at random has a

probability of 3/19 of being an O atom and a probability of

16/19 of being a C atom. If we now proceed onto choosing a

second atom (allocating its corresponding scattering factor),

we must then modify the previous probability diagram.

Besides, the new probability diagram that we must generate

depends on the atomic nature of the first atom. If the first atom

was a C atom, the probability diagram for the second atom,

randomly chosen, is

C O

15=18 3=18

� �
; ð17Þ

whereas if the first atom was an O

atom, the corresponding probability

diagram for the second atom is

C O

16=18 2=18

� �
: ð18Þ

We are, in turn, facing a conditional

probability, given that the probability

of an event happening depends on the

verification or not of other events. If

we wanted to calculate the informa-

tional entropy according to this

method, we would have to consider all

these possibilities, which implies a long

and tedious process. Let us try then to

calculate the informational entropy

due to the scattering factor through

another method, specifically through

the Hartley formulation.

In order to apply the Hartley

formulation, we must have an infor-

mation source with equally likely

chances. If we consider each peak of

the map separately, we are facing non-

equally likely information sources, as

we have seen before, and then the

Hartley formulation is not valid.

In turn, we must consider as an

information source the whole group of

19 labelled peaks of the Fourier map

and then proceed to count the

different possible nuclear configura-

tions resulting from a particular allo-

cation of a given atomic species

(carbon or oxygen) to each of the 19

peaks in the map. Each of the possible

nuclear configurations created repre-

sents a possible state and where all the

states are equally likely, so that the

Hartley formulation can then be

applied.

The problem that arises is equiva-

lent to the following. We have 19 free

boxes and we have to place a single

atom, either a C or an O atom, in each

of the boxes, bearing in mind that we have 16 C atoms and 3 O

atoms. In how many ways can we place the 3 O atoms and the

16 C atoms in the 19 boxes, knowing that in each box we can

only introduce one atom? This is a simple combinational

problem. The answer is given by the number of permutations

with 19 elements, out of which 16 are of one type and 3 are of

another type, PR16;3
19 ¼ 969. According to the Hartley formu-

lation, the informational entropy due to the scattering factor,

SðSÞ, is given by
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Table 1
Informational entropy due to connectivity, SðCÞ, for various Fourier maps with different numbers of
labelled peaks, jEj being the number of elements in the set E (Hartley formulation).

No. of
labelled
peaks

|E|
number of possible labelled molecular graphs

S(C)
(labelled
peaks)

1 1 0
2 2 1
3 8 3
4 64 6
5 1 024 10
6 32 768 15
7 2 097 152 21
8 268 435 456 28
9 68 719 476 736 36

10 35 184 372 088 832 45
11 36 028 797 018 963 968 55
12 73 786 976 294 838 206 464 66
13 302 231 454 903 657 293 676 544 78
14 2 475 880 078 570 760 549 798 248 448 91
15 40 564 819 207 303 340 847 894 502 572 032 105
16 1 329 227 995 784 915 872 903 807 060 280 344 576 120
17 87 112 285 931 760 246 646 623 899 502 532 662 132 736 136
18 11 417 981 541 647 679 048 466 287 755 595 961 091 061 972 992 153
19 2 993 155 353 253 689 176 481 146 537 402 947 624 255 349 848 014 848 171
20 1 569 275 433 846 670 190 958 947 355 801 916 604 025 588 861 116 008 628 224 190

Table 2
Informational entropy due to connectivity, SðCÞ, for various Fourier maps with different numbers of
non-labelled peaks, jEj being the number of elements in the set E (Hartley formulation).

No. of
non-labelled
peaks

|E|
number of possible non-labelled molecular graphs

S(C)
(non-labelled
peaks)

1 1 0
2 2 1
3 4 2
4 11 3.4594
5 34 5.0875
6 156 7.2854
7 1 044 10.0279
8 12 346 13.5918
9 274 668 18.0673

10 12 005 168 23.5171
11 1 018 997 864 29.9245
12 165 091 172 592 37.2645
13 50 502 031 367 952 45.5214
14 29 054 155 657 235 488 54.6896
15 31 426 485 969 804 308 768 67.7686
16 64 001 015 704 527 557 894 928 75.7605
17 245 935 864 153 532 932 683 719 776 87.6684
18 1 787 577 725 145 611 700 547 878 190 848 100.4960
19 24 637 809 253 125 004 524 383 007 491 432 768 114.2464
20 645 490 122 795 799 841 856 164 638 490 742 749 440 128.9237



SðSÞ ¼ log2 N ¼ log2 969 ¼ 9:9204: ð19Þ

The case that we have just developed corresponds to the case

of labelled peaks. If the peaks were non-labelled, some of the

possible vertex-weighted molecular graphs, resulting after the

allocation of atomic species on specific molecular graphs

(network of bonds), would be equivalent to each other by

topological symmetry and could thus be eliminated and, as a

consequence, the number of elements of set E to which

Hartley makes reference, and the resulting informational

entropy would take lower values. Despite this, values of

informational entropy due to the scattering factor are much

lower that the corresponding values of informational entropy

due to connectivity. This is one of the really interesting

conclusions that we were looking for.

In Table 3, we show the informational entropy due to the

scattering factor of a Fourier map of 19 peaks, for different

empirical formulas. In order to simplify the problem, we have

only considered the case of labelled peaks, which represents

the upper limit of informational entropy (unknowingness)

associated with the scattering factor.

4.4. Total informational entropy of Fourier maps

The total informational entropy of the Fourier map, SðFÞ,

will be the sum of the informational entropies due to

connectivity and due to the scattering factor,

SðFÞ ¼ SðCÞ þ SðSÞ: ð20Þ

If we consider the case of compound X, whose empirical

formula excluding H atoms is C16O3, the informational

entropy of the corresponding associated Fourier map will be

given by (labelled peaks scenario)

SðFÞ ¼ SðCÞ þ SðSÞ ¼ 171þ 9:9204 ¼ 180:9204 ð21Þ

or by

SðFÞ ¼ SðCÞ þ SðSÞ � 114:2464þ 9:9204 ¼ 124:1668 ð22Þ

in the case of non-labelled peaks.

As we can see, the informational entropy takes very high

values. Besides, the entropy due to connectivity exceeds the

entropy due to the scattering factor. This difference and these

high values shoot up as we increase the number of peaks in the

map. For example, if we consider the case of a compound of

empirical formula C90O10, the informational entropy of the

associated Fourier map will be given by (labelled peaks

scenario)

SðFÞ ¼ SðCÞ þ SðSÞ ¼ 4950þ 43:9767 ¼ 4993:9767: ð23Þ

This entropy (unknowingness, uncertainty) due to connec-

tivity is unnecessary and may be removed if we use a good

method for interpreting Fourier maps, such as topological

analysis, which can be performed in any Fourier map as far as

classical peak-picking works, if a robust procedure to extract

all the critical points is available (Menéndez-Velázquez, 1999;

Menéndez-Velázquez & Garcı́a-Granda, 2003).

5. Concluding remarks

The interpretation of a Fourier map from the information

theory point of view has been analysed by making use of both

Hartley and Shannon formulations. This analysis has allowed

us to conclude that there is a large informational entropy

(synonymous to uncertainty, unknowingness) in a Fourier

map, as a result of the different possible allocations of scat-

tering factors to the peaks in the map and due to the different

possible allocations of bonds between pairs of atoms. From

this analysis, we also found that entropy increases remarkably

as the number of map peaks increases and that the uncertainty

related to the chemical bond is much bigger than the uncer-

tainty due to the atomic nature.

SGG acknowledges MCyT (BQU2003-05093) for financial

support.
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